Neural Networks 2008/09, Second Exam, April 2009

Four problems are to be solved within 3 hours. The use of supporting material
(books, notes, calculators) is not allowed. In total, you can achieve a maximum
of 9 points, the grade for the exam will be determined as ”1 + number of points”.

1) Perceptron storage problem (2 points)

Consider a set of data ID = {&/, S“}fj:l where ¢* € RY and S* € {+1,—1}. In
this problem, you can assume that ID is homogeneously linearly separable.

a) Assume that you have found a solution w; of the perceptron storage prob-
lem which satisfies w, - €#S* > 1 for all . = 1,... P. Your partner in the
practicals has found a vector wy with w, - £€#S* > 5 for all 1 and claims
that, obviously, this solution is better then yours. Do you agree or disagree?
Give precise arguments for your conclusion!

b) Define precisely the following terms:
(I) the stability x* of an example {&*, S*}
(IT) the stability of a perceptron vector w
Provide a graphical illustration of (I) and (II) based on the geometrical
interpretation of linearly separable functions.

c) While experimenting with the Rosenblatt perceptron in the practicals, your
partner has another brilliant idea: the use of a larger learning rate. His/her
argument: updating w by Hebbian terms of the form 7 £* S* with a large n
should give (I) faster convergence and (II) a better perceptron vector. Are
you convinced? Give arguments for yor answer!

2) Learning a linearly separable rule (2 points)
Here we consider data ID = {&", S,‘%}f:l where noise free labels S%, = sign[w* - £"]

are provided by an unknown teacher vector w* € IRY with |w*| = 1.

a) Define the term version space in this context. Also provide a graphical
illustration in terms of the dual geometrical interpretation discussed in
class. Explain why the perceptron of optimal stability can be expected to
give low generalization error.

b) Assume that a new, random input vectors £ € IR" is generated with equal
probability anywhere on a hypersphere of constant radius |£] = 1. Given
w* and an arbitrary w € IRY, what is the probability for disagreement,
sign[w - &] # sign[w* - £]7 You can “derive” the result from a sketch of the
situation in N = 2 dimensions.



c)

3)

Define and explain the Minover algorithm for a given set of examples ID.
Be precise, for instance by writing it in a few lines of pseudocode.

Classification with multilayer networks (2 points)

a) Explain the so-called committee machine with inputs &£ € RN, K hidden

b)

c)

4)
a)

b)

units oy = +1,k = 1,2,... K and corresponding weight vectors wy, € R".
Define the output S(£) as a function of the input.

Now consider the so-called parity machine with N inputs and K hidden
units. Define its output S(€) as a function of the input.

Tlustrate the case K = 3 for parity and committee machine in terms of a
geometric interpretation. Why would you expect that the parity machine
should have a greater storage capacity in terms of implementing random
data sets ID = {¢&*, S“}fj:l.

Regression and overfitting (3 points)

Your partner in the practicals (again...) wants to use a multilayered neural
network with N input nodes, K hidden units and 1 output node (N —
K —1 architecture) in a regression problem. He/she suggests to use only
linear activation functions in the entire network, in order to avoid overfitting
effects. Why is this not a very convincing idea, in general? Write down the
output as a function of the input and start your argument from there.

Explain the method of k-fold cross validation, for instance in terms of train-
ing a neural network from a given data set. How can you use cross validation
to obtain information about bias and variance of the system? Explain also
how cross validation can be employed for model selection.

Consider a feed-forward continuous neural network (N-2-1-architecture)
with output

o(€) = ;Uj g(w - £).

Here, ¢ denotes an N-dim. input vector, w! and w? are N-dim. adaptive
weight vectors in the first layer, and v;,v, € IR are adaptive hidden-to-
output weights. Assume the transfer function g(z) has the known derivate
g'(z).

Given a single training example, i.e. input &£" and label 7% € IR, consider
the quadratic error measure

et =

(o(&") —7)".

DN

Derive a gradient descent learning step for all adaptive weights with respect
to the (single example) cost function e*.



